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Abstract

Background: Estrogens regulate diverse physiological processes in various tissues through genomic and non-
genomic mechanisms that result in activation or repression of gene expression. Transcription regulation upon
estrogen stimulation is a critical biological process underlying the onset and progress of the majority of breast
cancer. Dynamic gene expression changes have been shown to characterize the breast cancer cell response to
estrogens, the every molecular mechanism of which is still not well understood.

Results: We developed a modulated empirical Bayes model, and constructed a novel topological and temporal
transcription factor (TF) regulatory network in MCF7 breast cancer cell line upon stimulation by 17b-estradiol
stimulation. In the network, significant TF genomic hubs were identified including ER-alpha and AP-1; significant
non-genomic hubs include ZFP161, TFDP1, NRF1, TFAP2A, EGR1, E2F1, and PITX2. Although the early and late
networks were distinct (<5% overlap of ERa target genes between the 4 and 24 h time points), all nine hubs were
significantly represented in both networks. In MCF7 cells with acquired resistance to tamoxifen, the ERa regulatory
network was unresponsive to 17b-estradiol stimulation. The significant loss of hormone responsiveness was
associated with marked epigenomic changes, including hyper- or hypo-methylation of promoter CpG islands and
repressive histone methylations.

Conclusions: We identified a number of estrogen regulated target genes and established estrogen-regulated
network that distinguishes the genomic and non-genomic actions of estrogen receptor. Many gene targets of this
network were not active anymore in anti-estrogen resistant cell lines, possibly because their DNA methylation and
histone acetylation patterns have changed.

Background
Estrogens regulate diverse physiological processes in
reproductive tissues and in mammary, cardiovascular,
bone, liver, and brain tissues [1]. The most potent and
dominant estrogen in human is 17b-estradiol (E2). The
biological effects of estrogens are mediated primarily
through estrogen receptors a and b (ER-a and -b),
ligand-inducible transcription factors of the nuclear
receptor superfamily. Estrogens control multiple

functions in hormone-responsive breast cancer cells [2],
and ERa, in particular, plays a major role in the etiology
of the disease, serving as a major prognostic marker and
therapeutic target in breast cancer management [2].
Binding of hormone to receptor facilitates both geno-

mic and non-genomic ERa activities to either activate
or repress gene expression. Target gene regulation by
ERa is accomplished primarily by four distinct mechan-
isms (additional file 1) [3-5]: (i) ligand-dependent geno-
mic action (i.e., direct binding genomic action or
“DBGA”), in which ERa binds directly to estrogen
response elements (ERE) in DNA. Candidate DBGA
gene targets include PR and Bcl-2; (ii) ligand-dependent,
ERE-independent genomic action (i.e., indirect binding

* Correspondence: lali@iupui.edu
† Contributed equally
1Center for Computational Biology, Indiana University School of Medicine,
Indianapolis, IN 46202, USA
Full list of author information is available at the end of the article

Shen et al. BMC Systems Biology 2011, 5:67
http://www.biomedcentral.com/1752-0509/5/67

© 2011 Shen et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:lali@iupui.edu
http://creativecommons.org/licenses/by/2.0


genomic action or “I-DBGA”). In I-DBGA, ERa regu-
lates genes via protein-protein interactions with other
transcription factors (such as c-Fos/c-Jun (AP-1), Sp1,
and nuclear factor-�B (NF�B)) [4]. Target I-DBGA
genes include MMP-1 and IGFNP4; (iii) Ligand-inde-
pendent ERa signaling, in which gene activation occurs
through second messengers downstream of peptide
growth factor signaling (e.g., EGFR, IGFR, GPCR path-
ways). Ligand-independent mechanism can be either
DBGA or I-DBGA. These pathways alter intracellular
kinase and phosphatase activity, induce alterations in
ERa phosphorylation, and modify receptor action on
genomic and non-genomic targets; (iv) rapid, non-geno-
mic effects through membrane-associated receptors acti-
vating signal transduction pathways such as MAPK and
Akt pathways (i.e. non-genomic action, NGA). Note that
the term, non-genomic effect, is based on the fact that
estrodial signaling pathway doesn’t involve ERa itself
(additional file 1) and as a consequence there is no
direct ERa mediated transcription. Furthermore, target
genes can receive input from multiple estrogen actions,
e.g., cyclin D1 is a target of multiple transcription fac-
tors (TF): SP1, AP1, STAT5, and NF�B [3]. These four
complex regulatory mechanisms, which describe the dis-
tribution of ERa and co-regulators in the nucleus and
membrane signal transduction proteins, are called topo-
logical mechanisms and instrumental in sustaining
breast cancer growth and progression.
Dynamic gene expression changes characterize the

breast cancer cell response to estrogens, and the kinetics
of ERa target genes are strongly influenced by the hor-
mone treatment times. Early work by Inoue et al. [6]
revealed distinct gene clusters that correspond to either
early or late E2-responsive genes. Frasor and co-workers
[7] defined “early” responsive targets in MCF7 cells as
genes up- or down-regulated by 8 h after E2 treatment;
genes induced by 24 h post E2 treatment were classified
as “late” responders and can be blocked by the protein
translation inhibitor cycloheximide. It was further
demonstrated that cyclin D1 expression was mediated
by the interaction of ERa-Sp1 (early response) and by
MAPK-activated EIk-2 and SRF [3] (later response). As
ERa binding sites are more significantly associated with
E2 up-regulated rather than down-regulated genes [8],
Carroll et al. hypothesized that physiologic squelching is
a primary cause of early down-regulation and late
down-regulation is an ERa-mediated event. Collectively,
these studies and many others [9] strongly support a
temporal mechanism of ERa regulation.
A number of gene regulatory network models have

been developed to integrate ChIP-chip and gene expres-
sion data, including genetic regulatory module algorithm
(GRAM) [10], statistical analysis of network dynamics

(SANDY) [11], Bayesian error analysis model (BEAM)
[12], and two-stage constrained space factor analyses
[13-15]. Although a unified model framework was used
to establish regulatory networks, those computational
approaches were not capable of distinguishing genomic
and non-genomic mechanisms, presumably due to fail-
ure to account for key differences in the type of data
corresponding to genomic and non-genomic mechan-
isms. ERa genomic targets consist of protein binding
signals (ChIP-chip peaks), which is not the case for
non-genomic targets, and thus models and regulation
selection for genomic and non-genomic ERa regulatory
mechanisms are different. In addition, although the
above computational approaches join models for ChIP-
chip and gene expression data, TF motif scans are not
typically performed, making it difficult to infer ERa
DBGA or I-DBGA targets from these approaches.
In this study, we developed a new modulated empiri-

cal Bayes approach to assemble the ERa regulatory net-
work. Our approach, for the first time, differentiates
topological features of ERa regulation mechanisms:
DBGA, I-DBGA, and NGA. By examining the estrogen-
responsive gene network in breast cancer cell models,
we established that the ERa regulatory network changes
over time. This modulated empirical Bayes model con-
trols false positives arising from ChIP-chip binding data,
TF binding site (TFBS) motif scans, and differential
gene expression profiles. Two applications of this regu-
latory network were studied. In the first application, the
agonist/antagonist activities of two active metabolites of
tamoxifen, 4-OH-tamoxifen and endoxifen, were investi-
gated. The second application investigated the impact of
epigenetics (DNA methylation and histone modifica-
tions) on ERa regulatory network in our previously
established breast cancer cell model of acquired tamoxi-
fen resistance [16].

Results
Data analyses overview
The ERa regulatory network model was developed
based on differential gene expression data for MCF7
(untreated, 4 and 24 hour post E2 treatment) [16,17]
and ERa ChIP-chip data [8]. The antagonistic/agonistic
effects of OHT and endoxifen on this network were
assessed using MCF7 gene expression microarray data
at 24 hour post E2, OHT, endoxifen, E2+OHT, and E2
+endoxifen treatments [17]. In MCF7 cells with
acquired resistance to tamoxifen, the response of the
ERa regulatory network was evaluated using gene
expression microarray data [16], and the epigenetic
mechanisms for non-responsive ERa network in MCF7-
T cells were investigated by H3K4me2 and H3K27me3
ChIP-seq data and MCIp-seq.
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ERa regulation mechanisms and ERa targets
Based on ERa ChIP-chip data and microarray mRNA
expression profiles after E2 stimulation of MCF7 breast
cancer cells, we categorized ERa regulatory mechanisms
into three groups (additional file 2): genomic action
with ERa direct ERE binding (DBGA), genomic action
with ERa indirect/ERE-independent (e.g., AP-1) binding
(I-DBGA), and non-genomic/ligand-independent action
(NGA). In DBGA, the activation of ERa can be either
by E2 (ligand-dependent) or growth factor-mediated
phosphorylation (ligand independent) (additional file 1
and additional file 2). Our current data is not able to
distinguish between these two types of mechanisms.
Different ERa mechanisms and their targets in MCF7

cell are displayed in Figure 1. For the three ERa
mechanisms described above, more up-regulated targets
were observed than down-regulated targets after 4 hour
E2 stimulation (Figure 1A). Both DBGA and NGA
mechanisms have more targets than I-DBGA has. After
24 hour E2 stimulation, a greater (p < 0.00001 vs. 4
hour) number of down-regulated targets was observed

for all three mechanisms (Figure 1B &1C). These results
are not totally consistent with the results in [8], as we
use the 20% fold-change as an additional filtering criter-
ion. Many significantly down-regulated genes have small
fold change, especially after 4 hour E2 treatment.
It is interesting to note that the number of DBGA and

I-DBGA targets at 24 hour was approximately doubled
compared to 4 hour, while an approximate 5-fold
increase in the number of NGA targets was observed at
24 hours (Figure 1A &1B). Furthermore, there was strik-
ingly little overlap among the ERa targets between the
two time points (8.5%, 5.8%, 3.8% for DBGA, I-DBGA,
and NGA) respectively.
Gene ontology enrichment analysis was performed for

the genomic and non-genomic targets at 4 and 24 hour
after E2 stimulation, and the top 5 functional categories
are listed in Table 1 (p-value range for sub-functional
categories is reported for each category). Although both
genomic and non-genomic mechanisms share only a
small number of targets, their functions are highly con-
sistent. At both 4 and 24 hours, genomic targets are

Figure 1 Statistics of ERa targets after E2 stimulation. (A) ERa targets after 4 hour E2 stimulation in MCF7 cells; (B) ERa targets after 24 hour
E2 stimulation in MCF7 cells; (C) Comparisons of up/down-regulated targets within each of three ERa regulation mechanisms; and (D) ERa
targets overlap between 4 and 24 hour after E2 stimulation.
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mainly responsible for gene expression, cell morphology,
cellular growth/development/movement, and cell cycle/
death. On the other hand, at both time points, non-
genomic targets are attributed to RNA post-translational
modification, DNA replication/re-combination/repair,
amino acid metabolism, cellular assembly and organiza-
tions. Therefore, genomic and non-genomic mechanisms
have dramatically different impacts on the molecular
and cellular functions in breast cancer cells.

ERa regulatory networks and their hubs
After 4 hours of E2 stimulation, the ERa regulatory net-
work is composed of an ERa hub and multiple inter-
connected hubs (Figure 2A). Both ERa (DBGA) and
Sp1 (I-DBGA) hubs are consistent with genomic
mechanisms, while the other hubs follow non-genomic
mechanisms. The target sizes of genomic and non-geno-
mics hubs are approximately equal; however, after 24
hour of E2 stimulation, there is a pronounced increase
in the number of non-genomic hubs and targets com-
pared to genomic hubs and targets (Figure 2B). These
results demonstrate that while both genomic and non-
genomic hubs are equally important, a greater number
of late response E2 targets are activated through non-
genomic mechanisms compared to genomic hubs. In
addition, a striking feature of this dynamic ERa regula-
tory network is that a consistent set of transcription fac-
tors appear to control the hubs, despite the lack of
overlap for hub targets between the two time points
(discussed above; Figure 1D). These factors include
(ZFP161, TFDP1, NRF1, TFAP2A, EGR1, E2F1, PITX2).
Further comparison of the significant hubs between the
4 and 24 hour networks shows that both statistical sig-
nificance (p-value) and hub size are consistent between

two time points for both genomic and non-genomic
hubs (Figure 3).

Antagonistic/Agonistic effects of tamoxifen metabolites:
4-OH tamoxifen and endoxifen
Different SERMs have been shown to have different
antagonistic/agonistic on E2 up- and down-regulated
genes [18]. The effect of the tamoxifen metabolites
OHT and endoxifen, both well-known SERMS [17], on
ERa target networks has not been compared, particu-
larly with regard to ERa genomic/non-genomic targets.
Among the ERa targets identified after 24 hour of E2
stimulation, 17% and 14% were responsive to OHT and
endoxifen respectively, with 74% of the targets overlap-
ping (additional file 3). The agonist, antagonist, and par-
tial agonist/antagonist activity of OHT and endoxifen on
the ERa targets at 24 hour post E2 stimulation were
nearly identical for the two SERMS (41%, 7%, 52% and
40%, 7%, 53% for OHT and endoxifen, respectively;
additional file 4).
We further classified the effects of OHT and endoxi-

fen on ERa genomic/non-genomic and up/down regula-
tion. There was a tendency for a greater agonistic effect
on ERa genomic targets than non-genomic targets after
E2 or OHT treatment (p = 0.01; Figure 4A). However,
this difference in agonistic activity on genomic/non-
genomic targets was not seen (p = 0.67, Figure 4B) after
E2 or endoxifen treatment.

Epigenetic modifications impact the ERa regulatory
network in tamoxifen resistant MCF7 cells
Breast cancer cell models for acquired resistance to
tamoxifen display progressive loss of estrogen-dependent
signaling for cell growth and proliferation and a

Table 1 Gene Ontology Analysis of Estrogen Targets

ERa Target
Mechanism

4 hour after E2 Stimulation 24 hour after E2 Stimulation

Functional Category P-value
Range

N Functional Category P-value
Range

N

Genomic Gene Expression 2E-6 - 9E-3 26 Cellular Growth 4E-7 - 1E-2 96

Cell Morphology 4E-6 - 1E-2 15 Cell Cycle 2E-6 - 1E-2 37

Cellular Growth 3E-5 - 1E-2 37 Cell Death 4E-5 - 1E-2 70

Cellular Development 5E-5 - 1E-2 22 Cellular Movement 5E-5 - 1E-2 46

Cell Cycle 1E-4 - 1E-2 21 Cellular Development 6E-5 - 1E-2 48

Non-genomic RNA Post-Transcription 5E-6 - 4E-2 5 DNA Replication, Recombination, and
Repair

1E-9 - 3E-2 62

Modification

Cellular Development 8E-4 - 5E-2 2 Cell Cycle 1E-9 - 3E-2 70

DNA Replication, Re-combination, and
Repair

1E-3 - 4E-2 6 RNA Post-Transcription Modification 6E-6 - 2E-2 16

Cellular Growth 1E-3 - 4E-2 8 Post-Transcription 5E-4 - 3E-2 15

Amino Acid Metabolism 5E-3 - 5E-2 2 Modification Cellular Assembly and
Organization

6E-4 - 3E-2 37
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disrupted ERa regulatory network [16]. Among the ERa
targets observed after 4 hour E2 stimulation of MCF7,
only one target remained hormone responsive in the
tamoxifen-resistant MCF7-T subline (NRF1; Figure 5).

In order to understand the role of epigenetics in this non-
responsive ERa network, we investigated five possible
mechanisms (additional file 5): (A) high basal gene expres-
sion in the MCF7-T cell; (B) hypermethylation (MCF7-T

Figure 2 ERa regulatory network after E2 stimulation. (A) ERa regulatory network after 4 hours E2 stimulation in MCF7 cells; and (B) ERa
regulatory network after 24 hours E2 stimulation in MCF7 cells.
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vs MCF7) (C) hypomethylation (MCF7-T vs MCF7); (D)
high methylation level in MCF7-T; and (C) high H3K27/
H3K4 ratio. As shown in Figure 6, these mechanisms
account for approximately 27%, 19%, 15%, 34%, and 22%
of the non-responsive targets (Figure 6A); however, these
five mechanisms are not able to account for approx. 28%
of targets. Substantial (36%) overlap was seen between
hypermethylation (mechanism 2) and high basal methyla-
tion in MCF7-T cell (mechanism 4) (Figure 6B).

Validation studies
Pol II-Binding. We compared PolII binding signals in
MCF7 before and after 4 hour E2 stimulation. Nearly all
ERa genomic targets displayed the same direction in

fold-change between PolII binding and gene expression
signals (98%; additional file 6A). Among the non-geno-
mic targets, this concordance rate dropped slightly
(86%). On the other hand, the concordance rate among
non-targets was 55%.
H3K4 Dimethylation is a well established histone mar-

ker for transcription activation acetylation marker. We
selected the median of H3K4 dimethylation ChIP-seq
signal as the threshold. Almost all ERa genomic targets
displayed H3K4 dimethylation higher than the median
(94%, additional file 6B). Among the non-genomic tar-
gets, this concordance rate dropped slightly (84%). On
the other hand, the concordance rate among non-targets
was 49%.

Figure 3 Regularory hubs in ERa regulatory network. (A) The correlation of the significance of hubs between 4 hour and 24 networks; and
(B) The correlation of the significance of non-genomic hubs between 4 hour and 24 networks. Both axis are the -log(p-value), and the width
and length of the squares represent the relative scales of hubs.

Figure 4 Effect of selective ERa modulators. (A) The agonistic effect of 4-OH tamoxifen is greater on genomic mechanism than on
antagonistic or partial effects (p = 0.01). (B) No evidence for agonistic, antagonistic, or partial effects of endoxifen on genomic or non-genomics
mechanisms.
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Overlap of 4 hour and 24 hour Estrogen Targets in the
MCF7 Cell We used a different data set by Cicatiello et
al. [19], in which MCF7 cells were treated with E2, and
sampled at baseline, 4 hr and 24 hr. This experiment
was performed on a different gene expression platform,
Illunima. We applied a similar empirical Bayes model
and the same fold change threshold. We obtained a
similar percentage of up/down regulated genes after 4h/
24h estrogen treatment. In addition, the overlap of 4
and 24 hour gene targets was, 7%, similar to what we
found out with our data.
RT-qPCR, ChIP-PCR, and COBRA. We further investi-

gated four types of epigenetics mechanisms.

• Mechanism 1: GAB2 and LAMB2 were non-
responsive in our network due to significantly
increased basal expression in MCF7-T vs. MCF7
(based on microarray data). Although RT-qPCR ana-
lysis confirmed that GAB2 and LAMB2 expression
was significantly higher in MCF7-T vs. MCF7 (Fig-
ure 7A,B), both genes were slightly responsive to E2
in MCF7-T. Our interpretation is that Affymetrix

technology can be saturated for highly expressed
genes, becoming insensitive to subtle expression
changes. Nonetheless, the non-responsive mechan-
ism needs further experimental investigation.
• Mechanism 5: PGR, PLS3, SPATA13, GREB1, and
MAOA were non-responsive because of a high ratio
of H3K27me3:H3K4me2 in MCF7-T vs. MCF7.
Using ChIP-PCR, this mechanism was validated in
four of five target genes (Figure 7C,D,F,G; exception
was SPATA13, Figure 7E).
• Mechanisms 2 and 4: the DNA methylation status
four ERa targets (PGR, PLS3, CREB1, SPATA13)
was examined. Using COBRA assays, increased
DNA methylation was observed in PGR and PLS3
in MCF7-T compared to MCF7 (Figure 7H;
mechanism 4), and increased methylation in the
MCF7-T and the MCF7 (mechanism 2). Further-
more, in the non-responsive ERa network, both
PGR and PLS3 displayed both repressive epigenetic
modifcations, the altered histone methylation ratio
(mechanism 5) and altered DNA methylation
(mechanism 2 and 4).

Figure 5 ERa regulatory network in drug-resistant cells. ERa regulatory network in MCF7 cell after 4 hour E2 stimulation becomes non-
responsive to E2 in the MCF7-T cell (only one target gene remains responsive).
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Discussion
Advantage of the modulated empirical bayes method in
assembling a TF regulatory network model
Our proposed ERa regulatory network model frame-
work differs from existing methods in its ability to dis-
tinguish between genomic and non-genomic actions,
and the assumption for functional TFs. The pioneer TF
regulatory network for Saccharomyces cerevisiae, devel-
oped by Luscombe et al. [11] and Lee et al. [20],
emphasized that TFs themselves should be highly
expressed and display differences in expression level.
However, these assumptions tend to be overly stringent
and not suitable for our data. Our gene expression
microarray data suggested that the majority of the TFs
(more than 70%) are expressed at low levels in MCF7

cells, and E2 stimulation results primarily in changes in
TF phosphorylation state and not robust changes in TF
expression in breast cancer cell lines, including MCF7
[7,16,21]. All of the TFs in our genomic and non-geno-
mic hubs didn’t change their expression significantly
(additional file 7 and additional file 8). Stringent statisti-
cal models have recently been developed to establish TF
regulatory networks [12,13,15]. Such regression-based
approaches were not significant when used to analyze
our data (not even for ERa itself), mainly due to the
fact that TFs, including ERa, have both up- and down-
regulated targets. If targets that change in opposite
directions are not treated differently, the regression
model will cancel-out any effect of a TF on gene expres-
sion. Therefore, regression model-based approaches to
identify TF regulatory networks can be sensitive to a
mis-specified model.
Our proposed empirical Bayes method modulates FDR

calculations from differential gene expression data,
ChIP-chip binding peaks, and TF motif scans. The
inferred ERa regulatory network model has the follow-
ing features and advantages:

• Distinct genomic and non-genomic mechanisms.
• Less stringent requirements on TF gene expression
levels.
• Modulated data analysis leading to robust conclu-
sions with respect to model misspecifications.
• Modulated model assembly results in an extend-
able TF network, which is particularly useful when
additional data becomes available for new molecular
mechanisms.

ERa regulatory network and corresponding hubs
When constructing genomic targets of the ERa regula-
tory network, TFs are scanned within a narrow region,
45bp, of ERa ChIP-chip binding sites. This calculation
scheme enables the identification of either DBGA or
indirect I-DBGA. In many previous studies [8,22-24],
relatively large neighborhoods surrounding the ERa
binding site (around 500~1000bp) were scanned for
consensus sequences of TFBSs. While this is an effective
strategy for identifying co-regulatory TFs, it is not an
effective approach for inferences regarding DBGA or I-
DBGA. For example, Lin et al. [23] demonstrated that
EREs and ERE half-sites were enriched for other tran-
scription factors motifs, supporting the notion that TFs,
in addition to ERa, can bind to ERE. In our analysis, we
identified only Sp-1 as an I-DBGA. Although AP1 has
been reported to be an I-DBGA, in our data it did not
pass the false positive threshold (FDR = 0.23), due to its
relatively short TFBS (6 bp). Binding motifs for forkhead
TFs have also been reported to be enriched within ERa

Figure 6 Epigenetic mechanisms in drug-resistant cells .
Epigenetic mechanisms in ERa regulatory network in MCF7-T cell: 1
high basal gene expression in MCF7-T cells; 2 hypermethylation
from MCF7 cells to MCF7-T cells; 3 hypomethylation from MCF7
cells to MCF7-H cells; 4 high basal methylation level in the MCF-T
cells; 5 high H3K27/H3K4 ratio; and 6 unknown mechanisms. (A) The
distribution of non-responsive mechanisms in ERa regulatory
network in MCF7-T cell. (B) The overlap among 5 non-responsive
mechanisms.
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binding regions in MCF7 cells by ChIP-chip [8]. How-
ever, in our study, there was not sufficient evidence to
support FoxA1 as an I-DBGA (FDR = 0.34), a result
supported by recent studies using ChIP-seq and ChIP-
DSL [25-27]. Recently, RAR and ERa binding were
shown to be highly coincident throughout the genome,
competing for binding to the same or similar response
elements [28]. Our ERa regulatory network model, how-
ever, is not able to identify RAR targets, as the ChIP-
chip experiments were only performed for ERa binding
sites and not RAR.
In our analysis, non-genomic targets of the ERa regu-

latory network were constructed using genes whose pro-
moters, introns, or downstream sequences were devoid
of ERa ChIP-chip binding sites. Significant TF scan
scores of these gene promoters infer ERa non-genomic
action (NGA). It is worth noting that these NGA differ
from previously described ERa co-regulator factors.
NGA does not require ERa binding, in contrast to ERa
co-regulatory factors which must display ERa binding
peaks in the ChIP-chip analysis. Significant NGA tran-
scription factors include ZFP161, TFDP1, NRF1,

TFAP2A, EGR1, E2F1, and PITX2 (p <0.01). Other sig-
nificant NGA includes MYC, which has been previously
reported [28], and although MYC was present in both 4
and 24 hour ERa regulatory networks, the level of sig-
nificance was not high enough to be considered a hub
(p = 0.14).
Among the nine hubs that are significantly enriched in

both 4 hour and 24 hour ERa networks, two facilitate
genomic activities (ERa and Sp1), while the other seven
hubs (ZFP161, TFDP1, NRF1, TFAP2A, EGR1, E2F1,
PITX2) mediate non-genomic actions. With the excep-
tion of (ZFP161, TFDP1, PITX2), the functions of (Sp1,
NRF1, E2F1, TFAP2A, EGR-1) and their functional rele-
vance to estrogen action in breast cancer cells have
been extensively documented in [29-32].
While the ERa regulatory network concept has

recently been reviewed [33,34], our study is the first to
characterize genomic and non-genomic mechanisms and
their different functions. The genomic mechanism is sig-
nificantly involved in cell proliferation and control of
cell phases, confirming a significant effect of estrogen
on cell cycle regulation. Biological processes significantly

Figure 7 RT-PCR, ChIP-PCR and COBRA Validations
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affected by the non-genomic mechanism include RNA
post-translation modification, cellular development,
DNA replication, re-combination, and repair. Additional
models describing network properties of estrogen signal-
ing targets include the protein-protein interaction and
the functional module networks [28]. The focus of the
two networks is on the functional interpretation of the
targets and not mechanism of regulation. Furthermore,
the edges are interpreted as either protein interaction or
functional similarity and are not directional, compared
to the edges in our regulatory network, which have up
or down-regulation direction.

Antagonist/agonist effects of SERMs on ERa regulatory
networks
We observed full and partial antagonist/agonist effect of
OHT on MCF7 after 24 hour E2 stimulation, similar to a
previous study [18]. We further show that genomic and
non-genomic actions of the ERa regulatory network are
differentially influenced by full or partial antagonist/ago-
nist activities of OHT and endoxifen. The current study
clearly demonstrates that the E2 responsive ERa regula-
tory network is disrupted by two SERMs (additional file
4), but whether new networks are stimulated by these or
other SERMs require additional investigation.

Epigenetic Modifications of ERa Regulatory Network in
the MCF7-T Cell
A second application of the regulatory network was to
examine the impact of epigenetics (DNA methylation
and histone modifications) on the ERa regulatory net-
work in a breast cancer cell model for acquired tamoxi-
fen resistance of [16]. Transcriptionally active genes are
typically marked by higher levels of di-/tri-methylated
H3K4 (H3K4me2/3) and low trimethylated H3 lysine 27
(H3K27me3) levels [35], and in hormone responsive
MCF7 cells, E2-stimulated target genes have been
shown to posses enriched regions of H3K4me1/2 [36].
In contrast, MCF7 with acquired tamoxifen resistance
(MCF7-T), groups of previously E2-responsive genes are
now associated with low H3K4me2 and high H3K27me3
and are either downregulated or no longer strongly hor-
mone inducible (Figure 8). The H3K27me3 mark is
stable and invariably associated with transcriptional
repression [37,38] and we show that this repressive his-
tone modification plays a key role in the unresponsive
ERa regulatory network in MCF7 cells with acquired
resistance to tamoxifen (Figure 8). Although tumori-
genic gene silencing mediated by H3K27me3 has been
shown to occur in the absence of DNA methylation
[38,39], repressive histone marks frequently coordinate
with the more permanent mark of DNA methylation in
heterochromatin [39-41]. We previously demonstrated
that alterations in DNA methylation play an important

role in acquired tamoxifen resistance [16]. By integrating
both repressive epigenetic marks into our model, we
demonstrate that H3K27me3 and DNA methylation sig-
nificantly contribute to the non-responsive ERa regula-
tory network model in tamoxifen resistant breast cancer.
Furthermore, having recently demonstrated that many
TFBSs are enriched in regions of altered DNA methyla-
tion [42], we suggest that the functions of activators or
repressors could be altered by changes to the DNA
methylation landscape and further impact ERa networks
in breast cancer, an active area of investigation in our
laboratory.
When we compare the percentages of different epige-

netic mechanisms (Figure 7, 27%, 19%, 15%, 34%, 22%),
to 20% each for a random gene set based on the
selected thresholds, it seems that the non-responsive
targets have similar distribution of various types of epi-
genetic mechanisms as that of a random gene set.
Therefore, it is possible that there may not exist specific
patterns of epigenetic mechanisms in MCF7 cells’
acquired tamoxifen resistance.

Conclusions
In breast cancer cells, we identified a number of estro-
gen regulated target genes and the estrogen-regulated
network that characterizes the causal relationships
between transcription factors and their targets. This net-
work has two major mechanisms, the genomic action
and the non-genomic action. In genomic action, after
estrogen receptor is activated by estrogen, estrogen
receptor regulated genes through directing binding to
DNA. In non-genomic action, estrogen regulated its
gene targets through non-direct binding through other
factors. In the estrogen regulated network, we found
that though many non-genomic targets change over
time, they do share many common factors and the con-
sistency is highly significant. Moreover, we found that
many gene targets of this network were not active any-
more in anti-estrogen resistant cell lines, possibly
because their DNA methylation and histone acetylation
patterns have changed. Taken together, our model has
revealed novel and unexpected features of estrogen-
regulated transcriptional networks in hormone respon-
sive and anti-estrogen resistant human breast cancer.

Methods
Chromatin immunoprecipitation and ChIP-Seq library
generation
Chromatin immunoprecipitation (ChIP) for PoI II (sc-
899X, Santa Cruz, CA), H3K4me2 (Millipore, 07-030,
Billerica, MA) and H3K27me3 (Diagenode, CS-069-100,
Sparta, NJ) was performed as previously described [43].
ChIP libraries for sequencing were prepared following
standard protocols from Illumina (San Diego, CA) as
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described in [44]. ChIP-seq libraries were sequenced
using the Illumina Genome Analyzer II (GA II) as per
manufacturer’s instructions. Sequencing was performed
up to 36 cycles for mapping to the human genome
reference sequence. Image analysis and base calling were
performed with the standard Illumina pipeline, and with
automated matrix and phasing calculations on the PhiX

control that was run in the eighth lane of each flow-cell.
Samples were run on duplicates.

Methyl-CpG immunoprecipitation (MCIp-seq)
MCIp-seq was performed and followed the manufac-
ture’s protocol (MethylMiner, Invitrogen, Carlsbad, CA).
Briefly, genomic DNA was sheared by sonication into

Figure 8 Flow-Chat of ERa Regulatory Network Construction
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200-600-bp fragments, and methylated DNA was
immuno-precipitated by incubating 1 μg of sonicated
genomic DNA for 1h at room temperature with 3.5 μg
of recombinant MBD-biotin protein and Streptavidin
beads. Methylated DNA was eluted with high-salt buf-
fers (500 or 1,000 mmol/L NaCl), and then recovered by
standard phenol chloroform procedure. The DNA frac-
tions were subjected to library generation and followed
by Illumina sequencing. Samples were run in duplicate.

Quantitative ChIP-PCR
To determine binding levels of H3K4me2 and
H3K27me3 on target genes, quantitative ChIP-PCR was
used to measure the amount of this sequence in anti-
H3K4me2 or H3K27me3-immunoprecipitated samples
by PCR with SYBR Green-based detection (Applied Bio-
systems). Experimental quantitative ChIP-PCR values
were normalized against values obtained by a standard
curve (10-fold dilution, R2>0.99) constructed by input
DNA with the same primer set. Specific primers for
amplification are available upon request.

Reverse transcription and quantitative PCR (RT-qPCR)
Total RNA (1 μg) was reverse transcribed with the
Superscript III reverse transcriptase (Invitrogen, Carls-
bad, CA). PCR was performed as described previously
[45]. Specific primers for amplification are available
upon request. The relative cellular expression of a cod-
ing gene was determined by comparing the threshold
cycle (Ct) of the gene against the Ct of GAPDH.

Identification of differentially expressed genes and FDR
calculation
An empirical Bayes approach in the mixture-model fra-
mework was developed to assess differential gene
expression data from Affymetrix platform. Because the
differential expression inference is made at the gene
level rather than at the probe level, our model is an
extension of Kendziorski’s work [46,47]. In this model,
between-gene variation, between-probe variation and
between replicate are included. Specifically, let i index
genes (i = 1.2.,...,I), l index conditions/groups/time (l =
1,2; 1 is the reference), j index probe set (j = 1,2,..., ni)
and k index replicate (k = 1,2,..., mi). Let Gijk be the
expression level of the kth replicate on probe j for gene
i under group l. We consider the following random-
effects model:

Gijkl = μil + bij + εijkl

bij ∼i.i.d. N(0, σ 2
i ), εijkl ∼i.i.d. N(0, δ2

ijl)
(1)

where μil is the gene expression level for gene i under
condition l,bij represents the probe effect for the jth
probe of gene i and εijkl is the error term (for genes

with only one probe, the probe effect b is eliminated
from model (1)). We consider that the genes come from
three latent populations, each of which is characterized
by the location of μij (X variable) and μi2 (Y variable) on
a two-dimensional plane. The first population, a bivari-
ate normal distribution with the center located above
the y = x line, represents up-regulated genes. The sec-
ond population, a normal distribution along y = x line,
represents unchanged genes. The third population, a
bivariate normal distribution with the center below the
y = x line, characterizes down-regulated genes. Denote
by Yi a latent indicator such that Yi = 1,0,-1 implies that
gene i belongs to the first, second and third populations,
respectively. Thus, we consider the following model for
μil: [

μi = (μi1, μi2)|Yi
]

= f I(Yi=1)
1 f I(Yi=0)

0 f I(Yi=−1)
−1 ,

f1 = BN(μi; η1, �1),

f0 = I(μi1 = μi2)N(μi1; λ, φ2),

f−1 = BN(μi; η−1, �−1),

Pr[Yi = 1] = ρ1; Pr[Yi = −1] = ρ−1; Pr[Yi = 0] = ρ0,

η12 > η11, ξ12 < ξ11, ρ1 + ρ−1 + ρ0 = 1,

(2)

where I(.) is a function that takes value 1 if the argu-
ment is logical/true and 0 if otherwise; BN and N
denote the bivariate and univariate normal distributions,
respectively. By integrating equations (1) and (2), one
can use the Expectation-Maximization (EM) algorithm
(S1.doc) to estimate the parameter vector θ = (r, h1, Σ1,
h-1, Σ-1,l,�,s,δ). The posterior probability Pr[Yi = 0|G, θ̂ ]
can be interpreted as the probability that gene i is not
differentiated. Rigorously speaking, Pr[Yi = ±1|G, θ̂] can-
not be directly interpreted as the probability that gene i
is up/downregulated. However, a probability close to 1
indicates a good approximation. In our analysis, we
claim that a gene is up-regulated if Pr[Yi = 1|G, θ̂ ] > c
and μ̂i2 − μ̂i1 > 0 or downregulated if

Pr[Yi = −1|G, θ̂] > c and μ̂i2 − μ̂i1 < 0. The local FDR

can be easily estimated by 1 − Pr[Yi = 1|G, θ̂] or

1 − Pr[Yi = −1|G, θ̂][48]. In our analysis, we set c = 0.80.
Models (1) and (2) are fitted to baseline and E2 stimu-
lated (4 and 24 hours) expression data for MCF7 cells.
In addition to FDR, we also set 20% fold-change in
either up- or down-regulation in expression as the bio-
logically significant effect size. Binding Scores for Peak
Areas Identified by ChIP-chip and FDR Calculation is
based on model-based analysis of tiling-arrays [49].

Motif binding site scan and FDR calculation
Genomic Binding Sites: Each significant ChIP-chip peak
binding site sequence of length 45 bp (25 bp of tiling
array probes plus 10 bp up/downstream of each probe)

Shen et al. BMC Systems Biology 2011, 5:67
http://www.biomedcentral.com/1752-0509/5/67

Page 12 of 16



is scanned by all of the TF motifs in TRANSFAC data-
bases. The range of binding scores for a transcription
factor with motif M are divided into a number of small
bins (k = 200). The number of scores fall into each bin
is then calculated. If the number of any bin is lower
than a pre-specified limit (t = mb 20), the bin is col-
lapsed with neighboring bins until the number is beyond
the limit. The number of scores that fall in each bin is
denoted b by mb. Then, we randomly generate R =
10,000 sequences based on human genome background
using a 6th order Markov model. This model assumes
that a sequence element probability depends on 6 pre-
vious bases, immediately preceding the current base
[50]. The binding scores for these random sequences
are calculated, and the number of scores that falls into
each bin is denoted by nb. Finally, the local FDR, in
terms of binding event for scores in bin b, is calculated
as

FDRb,M =
nb/R
mb/I

, (3)

where I is the total number of genes. In doing so, we
force the bins below the midpoint of the score range to
have FDRb,m = 1 because it is highly unlikely that these
low score bins represent true binding events. Finally, we
fit a cubic smoothing-spline to FDRb,m to get FDRs,m,
the local FDR at score s (degree = 4, # of knots = # of
unique FDRb,m values). Then for each gene, we have the
FDR estimate respect to the event that TF g binds to
gene i’s promoter. This non-parametric approach to
estimate FDR was first described by Efron et al. [51] in
differential gene expression data analysis.
Non-genomic Binding Sites: We applied the same

method as above to the motif binding scores collected
from each gene promoter upstream 1Kb.

Modulated empirical bayes model: DBGA, I-DBGA, and
NGA mechanism determination based on ChIP-chip peak,
TF motif scan and differential gene expression data
Based on FDRs calculated from empirical Bayes models
in differential gene expression, ChIP-chip binding peaks,
and TF motif scan scores, DBGA, I-DBGA, and NGA
targets were calculated using the flow-chart displayed in
Figure 8. Graphical interpretations of different mechan-
isms and their associated data types are displayed in Fig-
ures S1 and S2. In brief, both genomic and non-genomic
targets must have significantly differentially expressed
genes, while only genomic targets have significant ChIP-
chip binding peaks. Finally, a DBGA has a significant
ERa motif in the ChIP-chip binding sites, an I-DBGA
has one or more significant TF motifs (other than ERa)
in the ChIP-chip binding sites, and a NGA has one or
more significant TF motifs in its target gene promoter.

TF Hub significance calculation
To quantify the significance of well-connected TF hubs,
we consider the following null hypothesis: TFs that are
involved in the regulation of differential genes are ran-
domly picked from a pool of known TFs. Specifically, we
suppose there are M differential genes. For each gene i,
there are bi binding sites by ChIP-chip and motif search
that pass the threshold, which involve ni (ni ≤ bi) unique

TFs. Therefore, there are a total of N =
M∑
i=1

ni involved

TFs. If there are n known TFs, then under the null
hypothesis the number of connected nodes for each TF is
the same as the number of times each TF appear from M
random draws with each draw of size ni. Note that each
draw of ni is without replacement because they represent
distinct transcription factors. The distribution of the
number of connected nodes (T) for any TF is

Pr(T = t) =

∑
ω∈�(t)

(∏
i∈ω

(
n − 1

ni − 1

)) (∏
i /∈ω

(
n − 1

ni

))

M∏
i=1

(
n

ni

) , (4)

where Ω(t) is the set of all subsets of {1,2,...,M} with t
elements. Hence, p-values associated with hub TFs can
be obtained by calculating Pr(T ≥ tobs), where tobs is the
observed number of genes regulated by the TF of inter-
est. This calculation is programmed in R.

Signal identification for ChIP-seq (PolII, H3K4me2,
H3K27me3) and MCIp-seq
In order to evaluate transcriptional activity, activating
and repressive histone methylation marks, and DNA
methylation of ERa target genes, ChIP-seq data for
RNA Pol II, H3K4me2, and H3K27me3 and MIRA-seq
data DNA methylation were analyzed. Total sequences
were normalized among replicates. For the ChIP-seq
data, the signal intensity was measured as the number
of ChIP-seq tags within the promoter region, defined as
1,000-bp upstream of TSS (transcription start site). In
the MCIp-seq data, seq tags within upstream 1000bp
and downstream 1000bp of the TSS were selected for
promoter DNA-methylation.

Identifications of agonist, antagonist, and partial agonist/
antagonist selective estrogen receptor modulator (SERM)
targets
Let (FCE2, FCSERM, FCE2+SERM) be the fold-change of
gene expression after treatment of MCF7 cells with E2,
SERM (OHT or endoxifen), or E2+SERM). We defined
fold-change as gene expression in the treatment group
over the control group for up-regulation; otherwise, it is
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defined as the minus inverse ratio. In particular, if a
gene is absent in both groups, the fold-change is defined
as 1. A SERM has an agonistic effect on a gene if |
FCSERM| > [1 + 70% × (|FCE2| - 1)], an antagonistic
effect if |FCSERM| < [1 + 35% × (|FCE2| - 1)] and |FCE2

+SERM| < [1 + 50% × (|FCE2| - 1)]; otherwise, it has a
partial agonistic/antagonistic effect. These agonist and
antagonist activities have been defined previously [18].

Epigenetic mechanisms of non-responsive ERa network in
4-hydroxy tamoxifen (OHT) resistant MCF7 cells
For ERa targets in the ERa regulatory network 4 hours
after E2 stimulation, five different epigenetic mechan-
isms were investigated (additional file 5).

• The first mechanism (additional file 5A) is the
high-basal gene expression in the 4-OHT-resistant
MCF7 cells, in which the threshold of high-basal
gene expression is defined as its 80th percentile.
• The second mechanism (additional file 5B) is
defined as the hyper-methylation: i.e., higher methy-
lation level of OHT-resistant MCF7 than the paren-
tal (hormone-responsive) MCF7. The threshold of
this fold-change is defined as its 80th percentile.
• The third mechanism (additional file 5C) is defined
as the hypo-methylation: i.e., lower methylation level
of OHT-resistant MCF7 vs. MCF7. The threshold of
this fold-change is defined as its 80th percentile.
• The fourth mechanism (additional file 5D) is
defined as the high methylation in the OHT-resis-
tant MCF7. The threshold of methylation level is
defined as its 80th percentile.
• The fifth mechanism (additional file 5E) is defined
as the high H3K27/K3K4 ratio, a gene repressive
mark, in the OHT-resistant MCF7. The threshold of
this ratio level is defined as its 80th percentile.

All other non-responsive ERa targets were categorized
as “unknown”.

Additional material

Additional file 1: is a jpeg file, indicating the situations of ligand-
dependent genomic target, ligand-independent genomic target and
non-genomic target

Additional file 2: is a jpeg file, indicating the relationships between
data and ERa mechanisms

Additional file 3: is a jpeg file, indicating the effect of 4OH-
tamoxifen and endoxifen on the network

Additional file 4: is a jpeg file, indicating agonistic, antagonist, and
partial agonistic/antagonistic effects of 4-OH-tamoxifen and
endoxifen

Additional file 5: is a jpeg file, indicating non-responsive
mechanisms in ERa regulatory network in MCF7-T cell. (A) high basal
gene expression in MCF7-T cells; (B) hypermethylation from MCF7 cells

to MCF7-T cells; (C) hypomethylation from MCF7 cells to MCF7-H cells;
(D) high basal methylation level in the MCF-T cells; (E) high H3K27/H3K4
ratio.

Additional file 6: is a jpeg file, indicating the concordance between
differential PolII bindings and differential gene expression among
genomic-targets, non-genomic targets, and none targets; and the
concordance between H3K4 dimethylation among genomic-targets,
non-genomic targets, and none targets. (A) The concordance of
differential gene expression and PolII binding are before and after E2
stimulation of MCF7 cells. (B) The concordance of differential gene
expression and H3K4 dimethylation.

Additional file 7: Supplementary Table 1

Additional file 8: Supplementary Table 2
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